Spectral modeling of channel band shapes in wavelength selective switches

日期: 2017-02-20
浏览次数: 73


Spectral modeling of channel band shapes in wavelength selective switches

Cibby Pulikkaseril,* Luke A. Stewart, Michael A. F. Roelens, ¨ Glenn W. Baxter, Simon Poole, and Steve Frisken Finisar Australia, 244 Young st., Waterloo, NSW, 2017, Australia

Abstract: A model for characterizing the spectral response of the passband of Wavelength Selective Switches (WSS) is presented. We demonstrate that, in contrast to the commonly used supergaussian model, the presented model offers a more complete match to measured results, as it is based on the physical operation of the optical system. We also demonstrate that this model is better suited for calculation of WSS channel bandwidths, as well as predicting the final bandwidth of cascaded WSS modules. Finally, we show the utility of this model in predicting channel shapes in flexible bandwidth WSS channel plans.

© 2011 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (060.4265) Networks, wavelength routing; (230.7408) Wavelength filtering devices.

References and links

1. S. Gringeri, B. Basch,V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).

2. J. D. Downie, and A. B. Ruffin, “Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks,” J. Lightwave Technol. 21, 1876–1886 (2003).

3. S. Tibuleac, and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28, 557–598 (2010).

4. T. A. Strasser, and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).

5. F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Proceedings of the Optical Fiber Communication Conference, 2010.

6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of the Optical Fiber Communication Conference, 2006.

7. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).

8. J. W. Goodman, “Frequency analysis of optical imaging system,” in Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).

9. D. M. Marom, D. T. Neilson, D. S. Greywall, C. S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. Lopez, F. Pardo, ´ M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle,“Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: theory, design, and implementation,” J. Lightwave Technol. 23, 1620–1630 (2005).

10. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron., QE-22, 682–696 (1986).

11. P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” in Proceedings of the Optical Fiber Communication Conference, 2007.

12. “ZEMAX Optical Design Program,” ZEMAX Development Corporation, USA.

13. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

14. J. F. James, Spectrograph Design Fundamentals (Cambridge University Press, 2007).

15. C. Malouin, J. Bennike, and T. J. Schmidt, “Differential phase-shift keying receiver design applied to strong optical filtering,” J. Lightwave Technol. 25, 3536–3542 (2007). #141439 - $15.00 USD Received 24 Jan 2011; revised 25 Mar 2011; accepted 4 Apr 2011; published 18 Apr 2011 (C) 2011 OSA 25 April 2011 / Vol. 19, No. 9 / OPTICS EXPRESS 8458 Fig. 1. General schematic of LCoS-based WSS operation as shown in [6].


Modern optical networks require add/drop nodes to allow efficient routing of signals, necessitating the use of reconfigurable optical add/drop modules (ROADMs) [1]. ROADMs replace passive splitters and multiplexers with Wavelength Selective Switches (WSS), an optical module that allows (de)multiplexing of individual wavelengths to selected common or output ports.

To understand the impact of the WSS channel shape on network performance, it is crucial to have an accurate spectral model of the WSS channel shape, especially as advanced modulation formats are being deployed to increase the spectral efficiency of the network. Early publications have characterized WSS channel shapes with third-order Butterworth filters [2], though this was primarily for thin-film devices. Currently, the literature favours modeling WSS channel shapes with the supergaussian function [3–5], which can be used to roughly match measurements, but is not representative of the underlying physical process, especially when used to predict the performance of a high-bit rate optical link with transmission through multiple ROADM nodes [4, 5].

The WSS structure considered in this letter, shown in Fig. 1, uses a liquid crystal on silicon (LCoS) switching element, as reported in [6]. In this implementation, the input optical signal passes through polarization diversity optics before being incident on a diffraction grating. The diffracted light is then focused onto a 2D array of LCoS pixels, where each pixel is individually addressed and causes a phase retardation from 0 to 2π. In one axis, a phase ramp is created to steer the beam to a desired output fiber [7].

In this letter, we present a method of modeling the channel shape of a WSS. This model is based on the physical operation of the device and it is shown that this model can be generalized to WSS designs that use alternative switching technologies. The model provides some insight into the specification of the WSS, namely that the optical transfer function bandwidth can be a single characterizing parameter of the spectral channel shape. We then demonstrate how this model can be used to predict the bandwidth of cascaded WSS channels, as well as facilitate the prediction of flexible bandwidth channel plans....


News / 推荐新闻 More
2017 - 06 - 09
2017/6/6,据新华社报道,日前从工业和信息化部获悉,我国目前在北京怀柔建设了全球最大的5G试验外场,试验网由国内外行业龙头企业参与,可提供端到端的测试环境,将有助于促进5G标准的形成和产业发展。在近日召开的世界移动通信大会全球5G测试峰会上,中国5G(IMT-2020)推进组副组长、中国移动技术部总经理王晓云表示,我国已建成全球最大5G试验网,爱立信、华为、诺基亚、中兴、大唐、英特尔等全球重要的系统、芯片、仪器仪表等领域企业共同参与了该项目。 目前,由5G推进组组织的5G技术研发试验第一阶段测试已圆满结束,充分验证了无线和网络关键技术在支持5G场景需求的技术可行性,目前第二阶段试验已启动。 在此次会议上,中国移动联合AT&T、沃达丰、华为、爱立信、大唐电信等企业共同发布宣言,将通过5G测试,推动5G全球统一标准,加强电信运营商、设备商和垂直行业合作伙伴间合...
2017 - 05 - 22
CommunicAsia2017(5月23日-5月25日)第二十八届国际通讯与资讯科技展览及研讨会将于新加坡举行,欧深特诚邀新老客户,行业人士前来交流洽谈合作. CommunicAsia2017(5月23日-5月25日)第二十八届国际通讯与资讯科技展览及研讨会将于新加坡MARINA BAY SANDS举行诚邀新老客户,行业人士前来交流,洽谈合作欧深特展会信息展会时间:2017年5月23日至5月25日展览地点:新加坡滨海湾金沙会展中心摊位号:1M5-02关于CommunicAsia2017展会 作为亚洲首屈一指的 ICT 资源和知识平台,CommunicAsia2017 将展示各种各样的前沿技术。通过融合这些前沿技术和在传统商业模式中取得进一步的突破,挖掘光通信领域最新技术产品,通过此次科技展览及研讨会,大力提升新技术产品研发,走在世界高新技能最前端,更为满足未来消费者的...
2017 - 06 - 08
由香港贸发局主办的第十三届香港春季电子产品展及国际资讯科技博览展(ICT展)于2016年04月13日--16日在香港会议展览中心举行,该电子展是亚洲最大春季电子展。 2015年春季电子展,吸引了来自21个国家及地区共3,390家参展商,数目刷新历届记录。十大买家来源地为中国内地、台湾、美国、韩国、日本、印度、俄罗斯、德国、英国及澳洲。 大会在世界各地共63个国家和地区组织了接近150个买家团,安排逾9500名来自逾6000家公司的国际买家参观展会,包括环球市场的主要入口商和分销商,例如美国的SEARS及BEST BUY、法国的Carrefour、德国的SIEMENS、日本的Panasonic及Casio、加拿大的Osiris、波兰的EltraAudiox等。        在本次展会上,欧深...
2017 - 02 - 20
【转载】Spectral modeling of channel bandshapes in wavelength selective switches Cibby Pulikkaseril,* Luke A. Stewart, Michael A. F. Roelens, ¨Glenn W. Baxter, Simon Poole, and Steve FriskenFinisar Australia, 244 Young st., Waterloo, NSW, 2017, Australia Abstract: A model for characterizing the spectral response of thepassband of Wavelength Selective Switches (WSS) is presented. Wedemonstrate tha...

电   话: 86 0755-27788593/26509551
传   真: 86 0755-23148593
Copyright ©2003 - 2017 深圳市欧深特信息技术有限公司